
UNLIMITEb

AL -A24 2 176

Report No. 91016

ROYAL SIGNALS AND RADAR ESTABLISHMENT,
0 MALVERN
z
0G) 11)1l!!~lll i' .:

v ir f'i

TRACEABILITY AND CONFORMANCE
IN SECURE SYSTEMS

Authors: G P Randell & C T Sennett

I " t,'-f trl~t0on Un mll'dtl
!I
4

PROCUREMENT EXECUTIVE, MINISTRY OF DEFENCE

RSRE
Malvern, Worcestershire.

August 1991

UNLIMITED 97 5044

CONDITIONS OF RELEASE
0107605 304210

MR PAUL A ROBEY
DTIC
Aftn-DIC-FOAC
Camwon Statlon-Dfd 5
Alexndria
VA 22304 6145
USA

....... DRIC U

COPYRIGHT (c)
1986
CONTROLLER
HMSO LONDON

***.................... DRiC Y

Reports quoted are not necessarily available to members of the public or to commwercial

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Report 91016

Title: Traceability and conformance in secure systems

Authors: G P Randell and C T Sennett

Date: 7th August 1991

ABSTRACT

Traceability in a software intensive system is the ability to link
statements of requirement with the implementation objects
which satisfy them and the means used to demonstrate
conformance. This report discusses the problems of
maintaining traceability when developing large secure
systems and the ways in which technology may be used to
support it.

Copyright

Controller HMSO London .w. ,,,wd

Di S P*tR! . ?C~d

This report on traceability and conformance is concerned with the
specification and implementation of software intensive systems, with
particular emphasis on security aspects. Traceability and conformance
are terms used loosely and it is the purpose of this report to discuss how
they might apply to practical software development. The current level of
practice might be summarised as traceability by cross references and
conformance by testing. This level is not satisfactory but modest
improvements in methods would radically transform the situation:
future technological change will also help and the report discusses
possibilities in this area.

1.1 The meaning of Traceability and Conformance

A software intensive system often starts life as a concept for meeting
some military requirement, although in at least as many cases the
system will be seen as an enhancement or replacement for an existing
system. During the course of development from concept to
implementation the system will be associated with or be represented by
many documents or items of software. As the development proceeds, the
documents become more and more detailed and explicit, ultimately
ending up with delivered software and representations of the hardware
configuration.

Conformance is the property that an implementation or
specification produced during this development satisfies the higher
level specification or requirement. Satisfaction conveys the idea of a
particular instance of a general property. The requirement is written in
general terms and the implementation must be shown to be a particular
instance of it. The test for satisfaction depends upon the requirement.
For example, response time might be a requirement and this would be
satisfied by any system with a response time less than that specified. On
the other hand, if the requirement concerned time between failures a
satisfactory system would be one having a greater value than the one
specified.

The conformance of an implemented system with a requirement
could in principle be established by checking it against the requirement
when it is actually delivered but this would be extremely unwise and
almost certainly infeasible. It would be unwise because it is highly likely
that the delivered system would not meet the requirements and be too
costly to correct the deficiencies. It is likely to be infeasible because end-
system testing and evaluation may not be able to demonstrate
conformance adequately. This is particularly the case for security
properties where end-system testing, no matter how desirable it is to do,
is insufficient on its own to establish trustworthiness. Consequently it is
desirable to establish conformance at every stage of the development
process.

Requirements are extensive and need to be broken down into
smaller items or statements of requirement (SOR). The system as a
whole conforms when the implementation satisfies all SORs. For each
individual SOR, it may be that most of the implementation is irrelevant.
To carry out the conformance check, particularly when this is being

done by informally by inspection, it is necessary to identify the part of the
implementation which is relevant. Traceability is the ability to do this,
namely to relate an item in a specification or requirement to the item or
items in the lower level specification or implementation which satisfy it,
and vice-versa. Thus traceability relates an SOR or specification with a
specification or implementation via a conformance check. This can be
illustrated with the model in figure 1. A software development has high
traceability if all the SORs in the requirement can be related to objects at
every stage in the development with the conformance report. Note the
inclusion of the conformance report which provides the reason for the
trace relation as well as supporting the main use of traceability in
demonstrating conformance. Note that all of these relations may be
many - many: a given requirement may need many implementation
objects in order to be satisifed and an implementation object may be
associated with the satisfaction of many requirements. Many different
kinds of conformance check may be employed.

Development
Methodology

I

Conformance Object under SOR
Procedure scrutiny

Conformance Report Traceability Map

Figure 1 - A Model of Traceability and Conformance

This simple model of traceability needs to be supplemented for two
reasons. Firstly, for reasons of quality and assurance, it is necessary to
place requirements not only on the delivered system, but also on the
system development process itself. A common example is the need to
undertake configuration management. The procedures in this case are
designed to ensure that a configuration can be identified and that
alterations are regulated, a process which supports traceability of the
other requirements. A development requirement is satisfied by the set of

2

procedures used in the development. Traceability is concerned with
demonstrating that they have actually been obeyed during the
construction of the system under development. Conformance is simply a
check that audit records are present for all the objects and events which
require it.

The model for this form of traceability is illustrated in figure 2. An
example of a development step is the entry of a module of code into
configuration control. The trace record relates the module being entered
to the time of entry and the individual responsible, to ensure that the
step is properly authorised. In development traceability, no intermediate
representations are present and the audit trail represented by the trace
records can be simply related to the requirement which gave rise to it.

Development
Methodology

Development Statement of
Procedure requirement

SDevelopment step Traceability record

Object underdevelopment

Figure 2. Traceability of methodological
requirements

The second reason for supplementing the model of traceability is that at
some point in the development tools can be trusted to guarantee the
satisfaction of a requirement by an implementation. The most obvious
example of this concerns the use of a compiler which is trusted to
generate object code from the source text of the implementation
language. Unless very high assurance is being sought, this stage of the
development process is not usually checked apart from module or final
acceptance testing. Analysis or formal verification is usually confined to
the source text. Other examples consist of the system building and
maintenance tools which are used to generate new issues of a system.
Traceability for such unchecked steps requires evidence that only the
appropriate tools have been used in the construction of the system. In

3

this case the evidence would consist of a demonstration that the
operational procedures or software controls within the development
environment are sufficient to maintain the integrity of construction.
This type of traceability will be called constructional traceability.

To summarise, traceability in practice occurs in three different
ways:

1. Standard traceability of a requirement to the implemented
system, as illustrated by figure 1.

2. Traceability of development requirements, as illustrated by
figure 2.

3. Traceability through representations generated mechanically,
that is, constructional traceability.

1.2 The benefits of traceability

Traceability is a necessary part of demonstrating conformance. The
decomposition of a requirement into units allows the conformance check
to be broken down into manageable components. Traceability is
necessary to demonstrate that the composition of the individual checks
satisfies the total requirement. Traceability helps to show that all of the
requirements are met and demonstrates how an implementation meets
a requirement. Both of these add to the assurance of the
implementation. Traceability supports the evaluation process by guiding
the evaluators over the implementation.

Apart from these benefits which are directed at high integrity
software, traceability helps with the general management and control of
the development. The decomposition of the requirement helps in giving
structure to the implementation but the traceability is necessary as the
structure of the implementation will not directly correspond to that of
the requirement. The structure involved also supports project control,
costing and maintenance: the traceability relation gives the ability to
analyse the impact of changes in the requirement. This applies in both
directions. Traceability allows the part of an implementation which
would be affected by a change in requirements to be identified. It also
allows the conformance checking which would be necessary as a result
of a change in the implementation to be identified. This aspect is
particularly important during the rating maintenance phase of a
project. Once a system has been evaluated the aim must be to identify
whether a proposed change is security relevant or not. Traceability
helps determine whether re-evaluation is necessary and the extent and
scope of it if it is.

L3 Technique to mupport twability and ooformaue

Traceability has traditionally been achieved informally. The original
requirement is stated informally, the design is described informally, the
conformance test is an assessment of a rationale document and the
traceability is achieved by cross-references and the consistent use of
names. Each of these things would be realised in some form of

4

documentation. Formal methods add precision to this process and also
allow mechanical conformance tests to be applied, for example proof
and analysis.

As traceability is concerned with relations it is natural to think in
terms of a database to hold the various documents and maintain the
traceability relations between them. Documents in the database may be
edited by a word processor; this may provide support for cross references
or for detailed document structure. Those aspects of traceability
concerned with quality and integrity of construction can also be
supported by the development environment which can be used to control
access to the database of documents and the tools used to check
conformance. There are technical developments in this area. There is
much interest, both in the UK and the US, in the use of computers to
support the acquisition process. The model for procurement envisages
an information base from which documents relevant to the procurement
are constructed, essentially as views on the database. The model does
not explicitly deal with traceability, but the ability to structure
information is a necessary prerequisite.

This report will review the extent to which current technology
supports traceability and will argue for an integrated approach in which
the information base contains the various tools used to demonstrate
conformance, as well as text, and is structured to support traceability.
Supported by a development environment providing adequate access
controls, the whole would considerably reduce the costs of evaluation
and simplify the construction of secure systems.

1.4 Current problems with Traceability and Conformance

Demonstrating traceability and conformance is not easy. The greatest
problem associated with current projects is one of scale and complexity.
A typical requirement for a command and control system, for example,
may extend over a 1,000 pages. A typical approach to traceability would
be to record all occurrences of the word "shall" as indicating a SOR. At
an average of, say, 5 per page, this would amount to a cross-reference
matrix of 5,000 entries and many of these entries would be multiple.
Current practice does not associate the traceability with the
conformance test, so the rationale for the reference is often lacking. A
cross-reference from a requirement to a procurement specification may
be traced, often only ending up with text which does not seem to bear on
the requirement. This is often because the conformance check is
lacking, which would explain why the reference is there, but more often
simply due to errors in the matrix. Establishing the cross-reference
matrix in the first instance is a major undertaking, but maintaining it
is an immense task, mainly because of lack of adequate support from
tools. The lack of association with conformance makes it impossible to
tell when a requirement is completely satisfied.

Conformance has many aspects, usually associated with the roles
of the persons having an interest in the system. Thus security is mainly
of concern to accreditors and evaluators, but it has impacts on the
potential users and, for control of the procurement, on the project
management. Each of these different persons has some say in the
acceptance of the system and consequently has some point of view about
conformance tests. Traceability structure does not currently map on to
these roles, which tends to lead to problems.

5

Traceability should be maintained throughout the lifecycle of the
project, but tends to be applied only to the development phase. Loss of
traceability during project definition and concept formation stages may
result in inappropriate requirements being implemented as it may not
be possible to say why a system is being built with a particular feature.
Loss of traceability during the maintenance phases makes evolution
impossible and even minor enhancements difficult. To support
maintenance, two way traceability is required, that is, from the
implementation back to the requirement and from the requirement
forward to the implementation. The former is fairly easy to provide as
the requirement can be copied or referred to from the implementation.
The latter however, requires a new version of the requirement to be
developed which contains the appropriate forward references.

The requirement for life-cycle traceability is particularly hard to
meet when the development crosses a contractual boundary, for
example, from project definition to implementation. The project
definition results in the technical requirement specification which may
then be issued for competitive tender. This often results in major loss of
traceability from the earlier stages of the project. Another problem
related to contracts concerns the conduct of evaluation. Because this is
done as a result of an independent contract, this needs its own baseline
document. The evaluation baseline will, however, have features in
common with other points of view: for example the users will be
interested in the security checks they must conform to and this should
be described in the user functionality. Thus the evaluation baseline has
to be extracted from the overall requirement and in the process
traceability can be lost.

There are a number of technical problems too. During the course
of development, the system will be described in many notations. Even the
simplest systems will be described in English and in the implementation
language, but there will usually exist other notations associated with the
design method. Tools to support the differing notations rarely interact.
The simplest possible traceability requirement would be standard use of
identifiers, but because of lack of communication between tools this
requirement is not well supported. There are no facilities, for example,
to look up flow names on a dataflow diagram while in the middle of word
processing for a design document. As a result inconsistencies arise and
traceability is lost. At the moment there are no facilities to check that a
formal specification in, say, Z, is compatible with a source text in an
implementation language. This loss of traceability considerably
weakens the chain of assurance in a high integrity development.

Traceability to hardware is also a problem, because the final
target is neither software nor a document, and hence cannot be stored
on a computer. The trace from a requirement to a hardware item which
satisfies it must involve a manual procedure.

Security gives rise to another technical problem. Because security
is essentially concerned with forbidding unauthorised information
flows, the security requirement cannot be captured at one level of
specification. As the development proceeds, adding further
implementation detail, the security requirement may need to be re-
established, to ensure that the implementation has not introduced
vulnerabilities. Quite apart from traditional covert channel analysis
there is a necessity to give a rationale for the conformance to the overall

6

security requirement in terms of the security properties of the
constituent components.

Finally, for requirements on the development process, there is
little support in standard development environments for controls which
would ensure that unauthorised alteration of the information base was
forbidden. There are two problems: one is that the granularity of
protection afforded by standard operating systems is too large and the
other is that the control afforded is of the wrong nature, namely
discretionary access control rather than that required for release and
modification of configurable items.

15 Sructure of the Report

The remainder of this report is structured as follows. Section 2 discusses
requirements, in particular the nature of security requirements. Section
3 discusses the fundamentals of conformance testing including formal
and informal methods, testing and analysis. Traceability aspects of the
technologies to support conformance are discussed in the next three
sections, followed by a section on development traceability and the
technology to support it. The report concludes with a summary of the
recommendations.

2. - .iemnt

Conformance and traceability are affected by the nature of the
requirement. A requirement such as limiting the total heat dissipation
for a system to a certain amount, requires only tracing through
equipment lists and the conformance check carried out with, say, a
spread sheet tool. Conformance with a functional requirement can be
established by software testing or by formal methods. As discussed
previously, requirements are either system requirements which can be
found in the delivered system, such as functionality or availability; or
they are methodological requirements which may be found in the
processes used for construction, such as the use of project control
procedures; or they are implementation requirements which may be
found in the implementation, such as the need for implementation in
Ada.

Security requirements appear in all three categories. First of all
there are the simple functional ones, such as the mechanisms for
identification and authentication, the mandatory and discretionary
access controls, audit, labelling and security officer functions. For
security, the requirement is not simply that these functions should be
present, but rather that they should demonstrably not be capable of being
by-passed. This follows from the higher level security requirement that
under no circumstances should information flow from a classified
source to a more lowly classified sink. This non-functional requirement
is quite difficult to test and may be given informally as requiring an
absence of covert channels, a property established by evaluation In any
case all security functions need to be evaluated to check for absence of by-
pass and so any secure system will have requirements to ensure that the
system is capable of being independently evaluated. The most important
of these is an implementation requirement that the system software
should be capable of being divided into trusted and untrusted software.
The trusted software constrains the remaining untrusted software to

7

obey the overall security requirement of regulating information flows.
Given an adequate regulating mechanism, only the trusted software
will need evaluation. Traceability is particularly important here as it is
necessary to exhibit the structure of the trusted software to show how the
flow regulation is actually brought about. This will usually involve
breaking trusted properties down into simpler ones.

This implementation requirement may be supplemented by
others, which might be called defensive measures. Typical examples are
the requirement for object re-use or the requirement to irreversibly
encrypt passwords. These requirements are somewhat controversial
inasmuch as they are implementation requirements and therefore
solution-oriented, but they are nevertheless frequent in common
practice. The traceability problem particularly affects the object-reuse
requirement inasmuch as the granularity of objects chosen to satisfy the
criteria needs to be justified.

The evaluatability requirement is further expressed in a system
requirement that there shall be evaluation deliverables, which provide
the evidence on which the evaluation proceeds. The traceability problem
here is that the evidence required depends upon the implementation and
so the requirement can only be specified in general terms.

Finally, the evaluatability requirement is completed by
methodological requirements guaranteeing access to the evaluators for
the purpose of inspection, configuration management controls,
documentation standards and so on.

In summary, security requirements consist of security
functionality, the requirement to exhibit the trust structure of the
implementation and requirements for defensive measures, evaluation
evidence and for trusted methodology. Each of these will need to be
traced using the appropriate model.

Conformance may be demonstrated informally, by testing, by analysis,
by proof or by construction. Conformance requires a specification, which
may be given formally, or informally. By "informal" is intended not only
natural language descriptions, but also the diagrammatic notations
whose meaning is established by convention. This section will briefly
describe the technical aspects of conformance, mainly with a view to
establishing the terminology.

&1 Formal Specifications

Most work on formal specifications has used a model based approach.
The model of the system consists of a formal description of a state
machine. An operation is a transition of the machine and so is specified
in terms of the changes to the state. An operation is specified in terms of
its precondition and its postcondition. The precondition gives the
possible states under which the operation may be invoked, while the
postcondition gives the new state achieved (possibly in terms of the
initial state). The system specification is given by defining the state and
the set of operations required. This is particularly useful for functional
properties, but has the drawback that the explicit mention of the state in
the specification may constrain implementations.

8

A rather more abstract approach is provided by the algebraic
methods. In these the operations are given simply in terms of the types
of the parameters and the expected results. A semantics is provided by
giving equalities which are satisfied by expressions formed within the
algebra. For example, within an algebra of numbers with addition as
the operation it is possible to define zero using the equation x + zero -

x, and so on. Algebraic specifications are particularly suited to relatively
low level properties of an implementation, and may be used for compiler
construction, or as the basis for analysis of implementations.

A requirement may specify behaviour rather than function: that
is, it may constrain the order of events rather than the nature of them
(which would be provided by a functional specification). For example it
may be a requirement that one event may only take place after another.
This is rather cumbersome to specify in a model based approach, so the
usual solution adopted is to use a process algebra, such as CSP or CCS
[Hoare 1985, Milner 1980].

Finally, it is worth recalling that a formal specification may not be
part of the original requirement, but arise as a result of implementing
that requirement. This particularly applies to process oriented
specificationi which may arise from the need to implement a
requirement on a distributed system.

3.2 Refinement

Refinement is the technical term used to indicate all the means by
which an implementation can be shown to satisfy a formal specification.
There are several forms of refinement, depending on the nature of the
formal specification and the type of (onformance required. For simple
functional specifications there are two varieties of refinement called
operational and data refinement.

3.2.1 Operational refinement

Operational refinement is the process by which an operation specified at
an abstract level is transformed into a program to carry out that
operation, thus adding algorithmic content or other implementation
detail. There are two fundamental rules for carrying out a refinement of
an operation: strengthening the postcondition and weakening the
precondition. The former means that more is known about the final
state of the refined operation than about the abstract one, and the second
means that the refined operation is applicable at least whenever the
abstract one is. In other words operational refinement guarantees the
functional conformance that the implemented operation works
whenever it was required to and does at least as much. These
fundamental rules may be supplemented by others which allow for the
introduction of implementation language structures, such as
conditional and loop statements, or the introduction of procedures and
declarations.

The set of rules is called a refinement calculus, an example being
that given in [Morgan 1990]. A program which has been developed by
transformations from a specification according to the rules of the
refinement calculus is guaranteed to conform to the function defined by

9

the specification. Each refinement step can be regarded as giving
traceability of an element of the implementation to the design
specification which gave rise to it. The conformance check is that the
rules have been correctly applied, a process akin to proof.

3.2.2 Data refinement

Data refinement is rather more subtle than operational refinement,
although there is only one rule to follow. It recognises the fact that a
specification may be written in abstract terms, such as sets and
functions, whereas the implementation must be expressed in concrete
terms, such as arrays and linked lists. Data refinement is the process by
which a specification, expressed in terms of operations on an abstract
state machine, is translated into an equivalent specification expressed
in terms of operations on a more realistic state machine. The new
specification is the design for the implementation. Thus the abstract
functional specification defines state variables and a set of operations
which bring about changes in the state variables. These variables will be
expressed in terms appropriate to the level of abstraction and so may use
sets or functions without being concerned about how they may be
represented in the machine. The design specification uses different state
variables and different operations, which are specifications for what will
actually be implemented. These variables will be defined in terms of
implementation entities, such as arrays or linked lists.

For the design specification to be a valid refinement of the
abstract specification, there must be a corresponding operation in the
design for every operation in the abstract specification; the design and
abstract state must be related so that it is possible to tell what abstract
state is being represented by a given design state; and the design
operations must have a corresponding effect on the design state as the
abstract operations have on the abstract state. The relation between the
abstract state and the design state is a very important element of data
refinen Pnt: it is called the abstraction invariant.

Tne justification for the data refinement process is that the design
is a model of the specification and does everything required by the latter.
This is often represented by means of a commuting diagram, as shown
in figure 3 below.

op
A

A A'

abs labs

D D'
OP

D

Figure 3. Data refinement

10

In this diagram, the abstraction invariant is represented by the function
abs, which gives the abstract state A corresponding to the design state D.
An operation OPD takes D to D' which must correspond to the abstract
operation OPA taking abs(D) to abs(D') (that is, A to A').

In order to demonstrate convincingly that the design specification
is a valid refinement of the abstract specification, that is, that a correct
implementation will be produced, it is necessary to prove the refinement
theorems. The first is to show that the initial design state corresponds to
the initial abstract state through the abstraction invariant, that is, that
abs(INITD) = INITA. Then, for each operation, there are two theorems
to be proved: the readiness and correctness theorems. The former
demonstrates that the precondition of the abstract operation implies the
precondition of the corresponding design operation, and the latter that
the design operation produces the correct result.

Thus data refinement provides both traceability and conformance.
The abstraction invariant, whether formal or an informal English
description, describes precisely what concrete representation is used to
represent an abstract representation. This gives traceability. Carrying
out the refinement proofs demonstrates conformance.

3.2.3 Algebraic refinement and analysis

An algebra is implemented by providing a set of operations which satisfy
the type constraints and equations of the algebra. The relation between
two implementations of the algebra is called a homomorphism: a
compiler for a language defined algebraically can be thought of as a
homomorphism because it outputs an expression in object code for every
expression input. This provides one approach to trusted compilation,
which is part of development traceability. However the more usual way
in which algebraic specifications are used is in terms of analysis. The
algebra is used as a model of computation and required properties such
as information flow properties may be expressed in terms of it as an
implementation or interpretation of the algebra. This is illustrated in
figure 4.

An example of this model is the use of MALPAS [RTP 1987] for
information flow analysis. The computational model is the flow algebra
underlying the MALPAS IL. For a given module implementing a
functional requirement one can derive the MALPAS translation which
forms the model of the implementation object. Non-functional
requirements such as the absence of illegal information flows between
security relevant implementation objects can be translated into the
model, thus expressing such requirements as "the current security level
is not altered by an untrusted function". With this scenario there is a
two stage traceability: from the general non-functional requirement to
the analysis procedure and from the analysis procedure to the
particular implementation object being analysed.

~11

Functional Non-functional
requirements requirement

Object under Computational
scrutiny model

Model of Analysis
implementation Procedure

Figure 4. Model of algebraic forms of requirement

32.4 Behavioural efnement

A behavioural specification consists of a set of allowable behaviours: a
conforming implementation would exhibit one of these on execution.
Consequently behavioural refinement is concerned with demonstrating
that the set of possible behaviours of an implementation is a subset of
that given by the specification. This is called safety refinement.

Thus behaviour consists of sets of objects: the nature of these
objects is determined by what is meant by "allowable". If the property
required is not affected by deadlock, behaviour can be represented by
simple sequences of events, called traces. If deadlock is not allowable,
behaviour must be more complex and contain the sets of events a process
is prepared to engage in at any one time, rather than a single event.
More complex interpretations of "allowable" require more complicated
models of behaviour.

12

3.25 Promotion

Promotion is a refinement method used when a state based specification
is to be refined into an implementation involving parallel processes, as
for example when implementing a distributed system. It is a form of
data refinement, where, in the design specification, the state data are
distributed across more than one component, such as, for example,
occurs with a central database computer and distributed workstations.
As a result of distributing the state data, the operations are decomposed
into parts, each part occurring in a different component. The refined
operation is constructed in stages. The first is to decide how to split the
operation into its central and local parts. The local part describes the
effect of the operation at a local component, that is, one of the
surrounding components (e.g. a workstation). A promotion schema is
then used to "scale up" (or promote) that local operation to determine its
effect on all of the local components. Often, this may say simply that no
other local component is affected by the operation. The promoted local
operation is then combined with the part occurring centrally to give the
complete refined operation.

As with any data refinement, traceability is given by the
abstraction invariant which describes how to retrieve the abstract
specification from the distributed design specification. Conformance is
then shown by proving the refinement theorems as before.

3S.6 Formal construction and type theory

Type checking may be used to show that functions are only applied to
values within a certain set and also to specify the set of values delivered.
Thought of in this way, a typing for a set of functions is a specification
for them: the domain of the function is the pre-condition and the range
is the post condition. Depending on the type system employed this may
imply either a strong or weak specification. The usefulness of type
checking probably lies as a mechanism for imposing a weak
specification, as the type checking may then be established
automatically. Typically, types are used to establish certain integrity
properties, for example integrity of array access, unforgeability of
references, non-interference between procedures and so on.

3.3 Informal Methods

Conformance using informal methods is concerned with demonstrating
the satisfaction of a requirement by the production of rationale
documents which are meant for human inspection. Nevertheless the
principles of traceability still apply: the document should contain a
reference to the SOR, the conformance check to be used, the object under
test and the informal rationale for why the object satisfies the test. The
first of these may be a reference and the rationale will be a narrative, so
the documentation problems only arise with the object under test and the
conformance test itself. In many cases, the conformance test could be an
informal description of a formal method described above. The formal
method used informally in this way gives a clear idea of the
conformance requirement without the cost of presenting the
specification or design in a formal notation. There will however be many

13

cases where one does not have a suitable formal method and must make
do with a clear statement of the conditions for satisfaction. The object
under test can either be some aspect of the design or a module of the
implementation. For the latter case, the source text of the module can be
incorporated or referred to in the documentation, so the main difficulty
in establishing the conformance lies in maintaining it through the
design stage.

In current practice, designs are usually expressed using a
structured method. The term "structured method" is used to describe
software analysis and design methods which are not mathematically
based. Rather, they use diagrammatic techniques and offer guidance to
control the whole development process. Examples of structured methods
are HOOD (Hierarchical Object Oriented Design), SSADM (Structured
Systems Analysis and Design Method), and Yourdon.

Structured methods use several diagrammatic notations, among
the most common being data flow diagrams, entity life histories and
entity relationship diagrams. The more prescriptive methods, such as
SSADM, also insist on recording cross-references in documents using a
fixed format. This helps to provide traceability. For example, the
problem/requirement form used in SSADM to record problems found or
additional customer requirements has a column for recording the data
flow diagram or other diagram in which that problem is resolved or the
requirement added.

The diagrammatic techniques themselves may be used to provide
traceability and, to some extent, evidence of conformance. As an
example, consider data flow diagrams (DFDs). These are diagrams
which show the movement of data within a system and between the
system and the outside world. An example data flow diagram, in
SSADM style, is shown in figure 5 below. There are four components:
external entities, which are sources or recipients of data outside the
system; processes, which are activities which transform or manipulate
data; data stores, which are repositories of data; and data flows, which
show the movement of data, with the direction of flow indicated by an
arrowhead.

Data flow diagrams are intended to be simple diagrams, which
may be readily understood. As such, they should fit onto a single sheet of
A4 paper. Unless a system is trivial, a single DFD will not contain all
the necessary detail. To overcome this problem, a set of DFDs, in a
hierarchical structure, is used. The top-level of the hierarchy is known
as the Level-1 DFD. It establishes the basic characteristics of the system,
namely the system boundary, external sources and recipients of data,
main system inputs and outputs, and the main system functions. The
main system functions are represented by processes on the Level-i DFD
and each of these may be expanded into a lower level DFD. Each process
can be thought of as a "window" into a diagram at a lower level in the
hierarchy. The lower level diagram contains an expansion of the detail
of the higher level in terms of Level-2 processes, data stores, data flows
and lower level external entities. These Level-2 processes may then be
extended further and the procedure continued down through the
hierarchy until a satisfactory level of detail is produced.

14

a 1 oain2

EniyProcess

D1 Data Store D I

Figure 5. A data flow diagram

Traceability is maintained through the process identifiers. The
processes at the top level are processes 1, 2, 3, etc. Each process within
the boundary of the lower level DFD is identified by a decimal expansion
to the higher level identifier. So, process 1 gives identifiers of 1.1, 1.2, etc.
If process 1.1 were then expanded to a Level-3 diagram, the identifiers of
the processes at this level would be 1.1.1, 1.1.2, etc. Simple conformance
checks are also possible, although not required by SSADM. The only
check that is made is that the lower level diagram has the same data
flows into and out of it as the process it represents has in the higher level
diagram. This check is an implicit one - it is a consequence of the
suggested way of drawing the lower level diagrams.

Tools which support SSADM may carry out conformance checks
on the diagrams, such as simple checks on the identifiers used, to
ensure they conform to the convention described above, checks on data
flows to ensure that they are consistent between diagrams in the
hierarchy, as previously mentioned, and checks that the decomposition
of data flows into more detailed flows are recorded as a form of data
refinement in the accompanying data dictionary.

The emphasis in structured methods is to control the development
process and document all stages thoroughly. This provides traceability,
but, as yet, little emphasis has been placed on providing written evidence
of conformance. Rather, walk-throughs and reviews are used.

3.4 Testing

Testing consists of executing software, under controlled conditions, to
observe whether or not predicted results actually occur. The test process
requires three inputs: the object under test, the input data for the test
and the expected results, the latter often being called the test oracle. The
input data and the oracle need to be prepared from the specification of
the object. If this is all that is used, the testing is called black box testing
because no account is taken of the design of the object. A more
aggressive form of testing seeks to explore likely weaknesses in the
design (such as initial and end cases) and is called white box testing.
Thus a model for testing is given below:

15

l-

Object
specification

scrutiny Procedure

F Test Report

Figure 6. A model of testing

Traceability within this model is to some extent determined by the
nature of the test procedure and the weight which is to be put oli testing
as an element of conformance. In an ideal, fully automated procedure,
the test could be characterised by an integer, a seed for random data
generation, with the oracle being determined by the specification and the
test result being capable of analysis automatically. One then simply
needs to record the input seed, the object under test and the result of the
test. Usually however, testing does not achieve this level of automation
and much more will need to be recorded.

Testing can be regarded either as an element of acceptance or as a
necessary part of quality in high integrity software development. If the
former, it becomes particularly important to trace the tests to the
specifications and SORs it is supposed to satisfy. However, as an element
of quality, it may be necessary only to demonstrate that the system has
been thoroughly tested, in which case the traceability is to the
methodology and one simply needs to demonstrate that agreed
procedures and standards for testing have been complied with.

It is of course well understood that testing is limited in its ability
to demonstrate conformity, because the test only applies to the particular
situation represented by the input data and there are many more
possibilities for input than can be tested in any reasonable length of
time. There are however some measures of the extent to which the test
has exercised the software: it may not be possible to exercise all possible
input values, but it is possible to ensure that all instructions have been
obeyed. The degree to which the software has been exercised is called a

16

coverage measure and there are several possible metrics. It is desirable
to work in terms of an agreed measure, which can be established by
analysis, and incorporate this into the test procedures.

Testing can be undertaken at three stages within the
development:

1. Module tests - dynamic testing of the basic individual modules
of the system in isolation, performed against the corresponding
parts of the design specification.

2. Integration tests - dynamic testing of progressively larger
combinations of modules, performed against the design
specification.

3. System tests - dynamic testing of the developed system,
performed against the functional specification.

Module and integration testing is usually done as part of the
development methodology, while acceptance testing is usually done as a
system test.

4 TraceaLnnIm aacba o UmntOMM

Documentation is easily the most important component in traceability
and conformance. Requirements originate as informal descriptions and
can only be given as a document. Many requirements can only be
satisfied informally and there will always be limits to what can be
formally specified, verified or tested. From our model of traceability,
when the conformance is informal, one is required to identify within the
documentation the original SOR, the object which (partially) satisfies it
and the conformance report. The maintenance of the document must
involve the maintenance of the relation between these entities and, in
addition, the informal conformance test must be a rationale document
which is available for human inspection. This latter requirement does
not exclude structured documents, but does mean they must be suitable
for human perusal. In practice this may well require the production of a
paper document.

There is a lack of commercial products to support traceability. In
the absence of specific tools, off-the-shelf word processors are often used
and indeed, their use has revolutionized the production of requirements
documents. The main problem with word processing is that it does not
support the structure which is a necessary part of the requirement. At
the very least a better identification of a SOR than the use of the word
"shall" is required, but for the purposes of traceability it is necessary to
have associated with the SOR the checks which will be used to
demonstrate conformance to it and some means of referring forwards to
the implementation or design which satisfies it. The check backwards
from the implementation to the requirement is more easily provided as
the requirement is more stable: it can either be referred to or quoted.
However, even in this case there remains the problem of ensuring the
requirement is not inadvertently altered.

A word processor does not naturally support different viewpoints
of the information which is required to control a project. An example

17

from security is that the evaluation contractor will need a baseline
document describing the trusted functionality to be assessed. However
the impact of the security mechanisms on the functioning of the system
is also of keen interest to the users of the system. To meet this problem
the evaluation baseline is usually extracted from the requirement
specification, leading to copying and the possibility of inconsistency.
Finally, there is an immense problem in maintaining references,
particularly when the system design changes representations. In this
case there is a need to be able to communicate identifiers between, say, a
diagram editor and a word processor, to achieve at least some
commonality of naming conventions.

One can suimmarise the deficiencies of current technology as lack
of means to impose structure on the documentary information, together
with a lack of integration between tools. There are however a number of
promising future developments. From the point of view of structure,
there is the availability of database technology. The problem itself is
more oriented towards an entity relationship database rather than a
relational one and it may well be that the technology will be provided by
advances in development environments rather than databases as such.
The PCTE development [Lyons and Tedd 1987] provides an example of an
environment which would support the information base approach.
Using such an information base it is possible to identify SORs more
easily; to classify them according to their relevance to a point of view
such as security; and to associate them with conformance checks and
the implementation elements which satisfy them, using simple
database manipulations. This use of structure for the purpose of
traceability must fit in with other uses of requirements information.
Consequently work is also needed to establish the structures which
would support the human process of procurement.

Apart from databases, structure can be provided by hypertext and
by processing based on tags. The hypertext concept supports the ability to
navigate around a document and so provides part of the solution for
cross-references and structure. It does not support the concept of
viewpoints and the current technology is primitive, particularly when
concerning maintenance and alteration of the structure.

An important example of processing based on tags is given by
Knuth's WEB program [Knuth 1984]. Here the structure is used to
present a program in a "literate" way, that is, in a form suitable for
human perusal, not the form suitable for the compiler. The
programming language text is presented in parts interleaved with
informal commentary, providing a natural and elegant solution to the
traceability problem at the level of the detailed program text. The
programmer works on the literate text, thus having as a main aim the
production of the evaluation deliverable which relates the program to the
requirements it is to satisfy. The WEB program extracts the program
text from the literate text using the tags as a guide. This is a simple and
very cost effective approach which should be adopted whenever feasible.

Integration of tools and support for cross references between
representations has two problems, one technical and the other practical.
The technical issue concerns the capabilities of tool interfaces. At the
moment the concept of a tool interface is of a passive object, essentially
not much more than a file of unstructured data. Integration of tools will
require much more capability than this, in particular the support for

18

p=

procedures as first class objects and the support for persistent,
structured values. Few environments provide this. The practical
problem is concerned with the integration of existing tools. It is unlikely
that it will be possible to give up commercial word processing and so
there will be a requirement to deal with texts provided outside the
information base. Clearly there will be a need to transfer data from
commercial word processors into the information base and vice-versa.
The transfer process, by supporting conventions and checking cross-
references, could support the integration of tools, although in a
somewhat cumbersome fashion.

The need for import and export is a requirement for any
procurement process based on electronic document interchange, such
as that proposed for the US Department of Defense computer acquisition
and logistics support (CALS) strategy, or the equivalent UK initiative.
Both of these are aimed at transforming procurement information into
electronic form over the next decade. The document interchange
standard proposed uses the ISO standard generalized markup language
(SGML) [ISO 1986]. SGML provides a system-independent means of
marking up the text of a document, describing its content (e.g. chapter,
heading, paragraph, list item) rather than its typographical features
(e.g. new page, 14pt Times bold, italic). The SGML standard does not
describe a language in which to encode documents. Rather, it gives a
metalanguage - an abstract syntax for describing the character set and
syntax of encoded documents, together with a default concrete syntax in
which to code such descriptions. SGML is designed for full multi-media
database publishing. It addresses the requirement for a straightforward
means of passing coded documents unambiguously between systems for
the raw text of documents, independent of page layout, hyphenation, etc.

The origin of SGML is with its use for typography, but because it is
a metalanguage it supports any sort of structure and a variety of usages.
In particular it provides a way of defining an interface between the
information base and the commercial tools used with it and for
structuring documents into requirements, traceability references and so
on.

5m tv anct of formal metho&

&1 Security and refinement in practice

Formal methods may be used to specify simple security functions, such
as a security officer function, or more global information flow
requirements. In either case, security considerations complicate the
issue. For information flow requirements the preferred methodology is
given in CESG Computer Security Manual F [CESG 1991]. In this
methodology, the security properties of interest are expressed in terms of
a security model, a finite state automaton in which the security
elements of the state are made visible as subjects and objects and the
security properties are asserted in terms of this automaton. At this level
of description, information flow constraints can be expressed in terms of
non-interference assertions [Goguen and Meseguer 1982], very general
input-output properties which constrain all information flows supported
by the implementation to obey the security policy. A security model in
this form can express many different security properties, according to
the security policy required.

1.9

For a formal development, to level 6 of the ITSEC criteria [ITSEC
1990] for example, it is required to develop a formal specification of the
design as a state machine. Subjects and objects are instantiated in the
model by the design entities and the design state machine is interpreted
as an automaton required by the model. The security properties of this
interpreted automaton may then be verified. From the traceability point
of view, the model and its associated security properties form the
requirement, the design specification satisfies it and traceability is
provided by the interpretation function. Conformance is given by proof
that the property required is present in the interpreted model. For
developments at a lower level of assurance the formal method can
sensibly be used as a basis for an informal description.

The security requirement is expressed as a property of the state
machine at a given level of refinement. The level chosen is to some
extent fixed by the need to specify the interface to the trusted computing
base (TCB), either as a formal or descriptive top level specification (FTLS
or DTLS) according to the assurance level. In the case of a TCB
implementing security controls such as file access for example, the
controlled operations would consist of things like read and write
accesses to files. The conformance of the TCB to the security
requirement is given by the functional specification of the operations
together with the reason for the controls not being subject to by-pass.
This would be related to the protection mechanisms, either hardware or
software, which are employed.

The user requirement actually arises at a higher level than this.
The basic transactions of interest to the user are made up of many TCB
operations. Consequently the traceability problem arises as to how to
progress from the user level requirement to the FTLS and how to ensure
that the user level requirement is consistent with the security
properties. For example a command and control system implementing
electronic mail will usually require the notification of mail arrival, even
if classified, to a user currently working at an unclassified level.
Another example is the security condition for navigating through an
entity relationship database. Navigation through a node of the database
should not necessarily raise the security level when the node is pointing
at a classified object. These problems can be handled by giving very
careful consideration to what consitutes an object in the model. This
will, of course, have to be related to what threats this would expose the
system to.

Unfortunately, this is an implementation rather than a
requirement activity. The precise way in which security objects relate to
user entities is a matter for implementation, so it is hard to specify
security aspects of user functionality without pre-empting the design.
The best approach seems to be to give the user requirement in the form
of scenarios, which can be used to check the design as it evolves.

Thus the procedure for traceability from the requirement to the
DTLS may be given as

1. Establish the security aspects of user requirements in the form
of scenarios of allowable behaviour.

2. Express the general information flow constraints in the
security model.

20

3. Establish the boundary of the trusted code using appropriate
protection mechanisms (hardware or software).

4. Define the FTLS as state and operations at the TCB interface.

5. Interpret state in terms of security objects and show the model
properties are satisfied.

6. Check scenarios to ensure that desired usage of operations is
achieved.

Functional security requirements are relatively easily traced and not
usually included in the procedure above. What is required is the ability
to demonstrate correctness, as with other functional requirements,
supplemented by absence of by-pass. This is equivalent to step 3 above.

Security considerations are also needed during subsequent
refinement of the design to an implementation. Neither operational nor
data refinement is guaranteed to preserve security as either may
introduce additional state (intermediate results or implementation data)
which give rise to undesirable information flows. There is also a
continuing interaction with user requirements. Taking file access as an
example again, the operational refinement of the user level transaction
will usually involve read and write operations to several objects. A
standard problem is that the inability to sanitize the workspace leads to
overclassification of written objects and an unusable system. Again this
usability aspect is an implementation dependent matter and difficult to
put into a requirement. The solution is probably to ensure that scenarios
cover this aspect. For example, a scenario for use of a tote display could
specify that it should be possible to update one element of the display
without the updated element taking the classification of the display as a
whole.

On the implementation side, many of these problems may be
controlled by hiding the implementation data from the untrusted code:
that which cannot be seen cannot give rise to security problems. Formal
techniques for addressing this include defining operations in terms of
abstract data types and guaranteeing no access to the implementing
type. This use of type checking to support security is little used at the
moment, although it appears to be a powerful and low-cost mechanism.

The other issue needing to be addressed during implementation is
concerned with the integrity of objects. The objects of a security
specification are refined into implementation entities such as records
and arrays. If it is possible to forge references or access outside array
bounds, the implementation will be able to violate security while meeting
the requirements of the security model. This traceability requirement
can be met by constructional traceability on the compiling system,
provided it supports object integrity adequately. If it does not, it may be
necessary to analyse the compiled code.

Security implementation requirements also have traceability
problems. A requirement like object re-use for example will need to be
defined in terms of objects at one level of refinement. Usually this would
be applied to backing store objects, but may be extended to refined forms
involving buffers and so on. There is also an operational refinement

21

.. , l :o.4- ,__ ___ ___ - _ _ _-

problem in deciding whether to standardise backing store on release or
allocation. Any of these cases could be acceptable, but will need to be
traced with a rationale based on a risk analysis demonstrating that the
one selected meets the requirement.
5.2 Future developments in formal methods and traceability

The above discussion shows that although the fundamental
mathematics supporting security and software development is well
understood, technology and methods to support the practice are not well
developed. The main problem is notational complexity compounded by a
lack of support for structural decomposition. Notational complexity is an
almost inevitable consequence of the introduction of any method of
precise specification. The counter to it is to choose a level of abstraction
appropriate to the properties under consideration together with a
decomposition of the problem into components. For example, it would be
useful to decompose an overall specification for a CCIS into separate
security requirements for database and workstations.

There are a number of technical approaches under consideration
at the moment which may help overcome this problem. The first is to
consider the expression of security requirements in a behavioural way,
rather than using state machines. The state based approaches tend to
force implementations, whereas behavioural specifications are more
abstract. Furthermore, they support the decomposition into components
as a parallel composition of processes. The technical problem with this
approach is a lack of understanding of the practical consequences of the
approach and a lack of technology to demonstrate compliance with a
behavioural specification.

Within the state based approach, structural decomposition is
addressed using the promotion technique. This should be fairly
straightforwardly applicable to the formal methodology described above,
but there are no worked examples of its use.

There is also a rather large gap in technology between the FTLS
and the implementation. Having proved consistency between a security
model and the FTLS, assurance criteria tend to call only for testing and
informal methods. The problem is that operational and data refinement
taken down to the code level are not well supported by tools and currently
tend to be too resource consuming to be cost effective. At the code level,
conformance is usually given by annotations. It is good practice to insert
these even if verification conditions are not going to be generated or
proved. Unfortunately there is no tool currently available to give a formal
check between a Z specification, for example, and an annotated
program, so traceability from design specification to implementation
has to be given informally.

Functional correctness is only one aspect of security and it is
possibly more important to establish lack of by-pass. As discussed above,
the technical approach here is to use type theories to express the
requirement and type checking for conformance. This approach will be
further discussed under the heading of software analysis.

Testing and analysis are considered together because they have similar

problems from the point of view of traceability. In either case there is a

22

problem in automating the generation of test data or analysis properties
from a specification and equally a problem in checking the output of the
test run or analysis procedure for compliance. There are very few cases
where an automatic procedure can be applied and generation and
compliance analysis nearly always involves human interaction. This
makes analysis and test costly to incorporate within the software
development process.

Testing and analysis can be considered as aspects of quality
during the development process, or as techniques to use during
evaluation. The traceability conditions necessary will differ according to
the mode of use. Considered as an aid to quality, testing and analysis
can be handled using development traceability. The quality consists in
demonstrating that a given testing or analysis regime has been followed
with evidence in the form of error rates, rather than details of individual
errors. During evaluation on the other hand, one is probing the
implementation for errors: this is rather akin to acceptance testing, an
activity which is done towards the end of the implementation.
Traceability forwards from evaluation is required for future
maintenance of the evaluation rating, so it is still necessary. However,
the situation is not as dynamic as during the actual system development
itself, so the lack of automatic aids is not felt quite so strongly.

6.1 Traceability aspects of testing

For development quality it is usual to do black box testing in which the
test data is generated from the specification alone. It will usually suffice
to have test scripts which can be available for inspection by the
evaluators. These can be assessed from the point of view of conformance
informally, or with the aid of a test coverage monitor. It is useful if the
test history of a particular module can be recorded. For high integrity
developments, the trusted code should have few or no errors. For this
mode of use, it is important to recognise when a module is submitted for
test and distinguish this status from the programmer's normal
exploratory testing as part of development. The maintenance of the test
history and module status will require enforcing controls within the
development environment if it is not done independently of the
programmers by the evaluators.

For evaluation, it is important to do white box testing. During
evaluation the requirement is to expose flaws in the design, so it is
obviously desirable to #xplore weak points and the concept of test
coverage is relatively meaningless as the weak points may correspond to
a very low level of coverage. The test data will need to be hidden from the
implementor and can probably be generated as a test script for the final
acceptance. The details of the script can fairly easily be related to the
requirement specification, but it will also need to be traced to the design
when this has been used. This traceability forwards is necessary to
reduce the costs of future evaluations, incurred as a result of changes in
the system.

6.2 Trceability aspects of aaysis

Analysis techniques commonly employed consist of control flow, data
use and information flow analysers. Control flow can be of some use

23

during evaluation as it gives a measure of complexity of an
implementation, but for development purposes it is probably better to rely
on coding standards, with informal checks for compliance. A coding
standard can capture other aspects of well structured software apart
from control structure and the control flow analysis does not really give
a very objective measure of quality. Data use analysis can be a useful
technique in demonstrating compliance with object re-use
requirementq. The problem with the technique is that it is unselective.
Standard d-., use analysis will generate many data anomalies, which
are generalv innocuous. What is required is selective use to
demonstrate compliance with those quantities which are required to be
unalterable by untrusted code, such as security levels. Information flow
is another useful technique for demonstrating compliance, and in this
case commercial analysers provide some means of automating the
compliance check. This is because they provide input/output relations
for procedures which can be automatically checked by information flow
analysis. The input/output relations ("derives" annotations) are
relatively easily traced back to higher level requirements.

In evaluation mode, analysis tools are probably best regarded as
tools to assist the evaluator in understanding the implementation.
Faults suggested by analysis will normally be verified by testing, and so
there is no requirement to trace the analysis process itself.

6.3 Developments in techniques for testing and analysis

The principle problem in testing and analysis comes in automating the
procedures and being selective in the properties tc,.,u or analysed. The
topic of generating test data from a specificatiun is an issue in safety
engineering which has received some attention, but the application of
the techniques to security engineering has not been investigated,
although it is likely that the teLhniques are applicable. The security
properties needed for analysis on the other hand, are well understood.
What is required is the ability to demonstrate access to data only via
certain procedures, lack of interference between procedures, the ability
to hide data, the ability to make certain items unforgeable or unalterable
and so on. These particular properties are based on particular
applications of data use and information flow, but applied to certain
variables. Work at RSRE has shown how these particular properties can
be expressed as types: the type system is a development of that available
in standard languages and the best way of implementing it would seem
to be as an input to an analysis phase which guaranteed that the usage
of identifiers in the implementation language also conformed to the
usage specified by the secure type system. This would give a way of
checking that the security structure required was present in an
implementation.

7. htv and vofrnn n Dvlrtn ~ ironarmt

It should by now be apparent that the requirement for traceability are on
the bounds of feasibility for current technology for development
environments. For simple informal developments, the problems are
maintaining cross references between requirements, rationale and
design documents and the source text of the implementation. For formal

24

developments the problems are similar although complicated by the
need to trace between representations needed by differing formal
descriptions. In addition, a high assurance formal development will
need to verify the conformance between representations using formal
proof: thus there are additional interfaces between formal descriptions
and proof tools. Traceability requires evidence that the proofs displayed
are valid.

In theory all of these checks could be done manually but for a
development of any size at all, manual checking consumes
unreasonable amounts of effort, both in the maintenance of traceability
during implementation and cross checking during evaluation. Tools
can assist this process by implementing these checks mechanically: the
development environment cart support the tools by providing structured
data on backing store (object management systems or persistent values)
which can provide means for indicating dependencies.

Apart from support for cross references the development
environment has a role to play in both development and constructional
traceability. For the former one could naturally think in terms of audit
trails and these do have a part to play in establishing the history of
configuration items. However, in many cases the development
traceability can be expressed in a similar fashion to constructional
traceability and so use similar techniques. For example the requirement
that modules should reach an acceptable testing level before being
entered into the configuration management system can be expressed in
a constructional way by requiring that the configuration is only made up
from tested items. Techniques for establishing constructional
traceability again involve the use of types, which can express constraints
of this nature: for example, that systems are built from modules which
may only be produced by compilers. Types are appearing more and
more in specifications for development environments and so one may
expect to see some form of typing available for industrial use quite
shortly.

Development traceability also includes some form of
accountability. It is important to know not only that a procedure has
been followed, but also who has invoked it. This involves the usual
mechanism for identification and authentication supplemented by audit
and discretionary access to tools. This integrity policy will need to be
trustworthy, but as the control is over actions rather than information
flow it should be easier to implement to a given level of assurance than a
security policy.

8 Conclusions nd Further Work

There is no doubt that traceability of current secure systems is
inadequate: it is one of the causes of costly implementations, even at low
levels of assurance. It is a major cause of costly evaluation and the
reason for what will no doubt prove to be an almost total inability to
maintain trusted systems. Technology to support traceability is clearly
deficient, but the problems are not entirely technological. The following
recommendations are made for providing traceability within current
technology:

25

Within requirement specifications, SORs should be indicated
more positively than by the simple occurrence of the word "shall".

Each SOR should be associated with some conformance
mechanism to provide the acceptance test and the means of
providing traceability specified.

Each SOR should be categorized so that ones relevant to a
particular point of view, security for example, may be extracted.

More attention should be directed at controls in the development
environment ensuring development traceability.

SORs should be traced back to the operational concepts and
assumptions which gave rise to them.

Following these recommendations will involve giving serious
consideration to the structure of requirements. The discussion of this
report has been centered on the issues of conformance which naturally
arise during procurement and implementation. Although this is a
major issue, it is certainly not the most important use of a requirement:
other uses are concerned with effectiveness, feasibility, costing,
performance and risk analysis generally. Points of view on systems
cover physical aspects, communications and human computer
interactions as well as software. Development of a structure to support
these uses within these points of view needs to be matched to the roles of
those participating in the procurement process. The description of a
reasonable structure which could be validated against a typical
procurement would be useful work and this gives the following
recommendation for a study:

The procurement process for large software intensive systems
should be studied to establish appropriate information structures.

Technologically, there is much research and development work needed
on conformance. For example, the generation of test data from
specifications, better methods of specification, refinement and theorem
proving and so on. These are somewhat outside the scope of traceability
as such, although tools to support these methods need to be constructed
with the needs of traceability in mind. The specific technological
problem associated with traceability is concerned with the integration of
tools and the integrity of the development process. The support for this is
provided by tool interface definitions and data repositories. Such
technology already exists, but there is no work being done on assembling
it into a trustworthy process suitable for the development of secure
systems in an industrial context. This leads to our final
recommendation

Work need to be undertaken leading to the demonstration of a
trusted software development system.

26

Refe~n~s

CESG (1991). A formal development methodology for high confidence
systems. CESG Computer Security Manual F.

Goguen J A and Meseguer, J (1984). Unwinding and inference control.
Proc 1984 Symposium on Security and Privacy, Oakland, California,
USA. IEEE Computer Society 1984.

Hoare, C A R (1985). Communicating sequential processes. Prentice
Hall International series in Computer Science.

ISO (1986). Standard generalized markup language (SGML) for text and
office systems. ISO 8879-1986. (Also available as British Standard BS
6868:1987).

ITSEC (1990). Information Technology Security Evaluation Criteria.
(Harmonized criteria of France, Germany, the Netherlands and the U-K,
available from CLEF Certification Body, CESG, Fiddlers Green Lane,
CHELTENHAM Glos. GL52 5AJ.)

Knuth, D E (1984). Literate programming. Computer Journal, 27, 2,
pp97 - 111.

Lyons, T G L and Tedd, M D (1987). Technical overview of PCTE and
CAIS. Ada User, 8(supplement): S73 - S78.

Milner, R (1980). A calculus of communicating systems. Lecture Notes
in Computer Science 92, Springer Verlag, New York.

Morgan, C (1990). "Programming from Specifications", Prentice-Hall
International Series in Computing Science.

RTP (1987). MALPAS Intermediate Language Manual. Rex, Thompson
and Partners, Newhams, West Street, Farnham, Surrey.

• 27

REPORT DOCUMENTATION PAGE DRIC Reference Number (if known) ..

Overall security dass cation of sheet UN C LA S S IFIE D ..
(As far as possible this sheet should contain only unclassified information. If it is necessary to enter classified information, the field concerned
must be marked to Indicate the classification eg (R), (C) or (S).

Originators Referene/Report No. Month Year
REPORT 90016I AUGUST 1991

Originators Name and Location

RSRE, St Andrews Road
Malvern, Worcs WR14 3PS

Monitoring Agency Name and Location

Title

TRACEABILITY AND CONFORMANCE IN SECURE SYSTEMS

Report Security Classification Title Classification (U, R, C or S)

UNCLASSIFIED U
Foreign Language Tite (in the case of translations)

Conference Details

SAgency Reference Contract Number and Period

Project Number Other References

Authors RANDELL, G P; SENNETT, C T Pagination and Ref

28

Abstract

Traceability in a software intensive system is the ability to link statements of requirement with the
implementation objects which satisfy them and the means used to demonstrate conformance. This report
discusses the problems of maintaining traceability when developing large secure systems and the ways
in which technology may be used to support it.

Abtract Cla.,sfication (U,R,C or S)

U

Deowdpon

i i bu D on Slatement (Entvr any Nffta s on th distrbutin of the docurront)

!! , UNLIMITED

